Osteoblast lineage-specific effects of notch activation in the skeleton.

نویسندگان

  • Ernesto Canalis
  • Kristen Parker
  • Jian Q Feng
  • Stefano Zanotti
چکیده

Transgenic overexpression of the Notch1 intracellular domain inhibits osteoblast differentiation and causes osteopenia, and inactivation of Notch1 and Notch2 increases bone volume transiently and induces osteoblastic differentiation. However, the biology of Notch is cell-context-dependent, and consequences of Notch activation in cells of the osteoblastic lineage at various stages of differentiation and in osteocytes have not been defined. For this purpose, Rosa(Notch) mice, where a loxP-flanked STOP cassette placed between the Rosa26 promoter and the NICD coding sequence, were crossed with transgenics expressing the Cre recombinase under the control of the Osterix (Osx), Osteocalcin (Oc), Collagen 1a1 (Col2.3), or Dentin matrix protein1 (Dmp1) promoters. At 1 month, Osx-Cre;Rosa(Notch) and Oc-Cre;Rosa(Notch) mice exhibited osteopenia due to impaired bone formation. In contrast, Col2.3-Cre;Rosa(Notch) and Dmp1-Cre;Rosa(Notch) exhibited increased femoral trabecular bone volume due to a decrease in osteoclast number and eroded surface. In the four lines studied, cortical bone was either not present, was porous, or had the appearance of trabecular bone. Oc-Cre;Rosa(Notch) and Col2.3-Cre;Rosa(Notch) mice exhibited early lethality so that their adult phenotype was not established. At 3 months, Osx-Cre;Rosa(Notch) and Dmp1-Cre;Rosa(Notch) mice displayed increased bone volume, and increased osteoblasts although calcein-demeclocycline labels were diffuse and fragmented, indicating abnormal bone formation. In conclusion, Notch effects in the skeleton are cell-context-dependent. When expressed in immature osteoblasts, Notch arrests their differentiation, causing osteopenia, and when expressed in osteocytes, it causes an initial suppression of bone resorption and increased bone volume, a phenotype that evolves as the mice mature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Notch activation in osteocytes causes osteopetrosis.

Activation of Notch1 in cells of the osteoblastic lineage inhibits osteoblast differentiation/function and causes osteopenia, whereas its activation in osteocytes causes a distinct osteopetrotic phenotype. To explore mechanisms responsible, we established the contributions of canonical Notch signaling (Rbpjκ dependent) to osteocyte function. Transgenics expressing Cre recombinase under the cont...

متن کامل

Maintenance of Bone Homeostasis by DLL1‐Mediated Notch Signaling

Adult bone mass is maintained through a balance of the activities of osteoblasts and osteoclasts. Although Notch signaling has been shown to maintain bone homeostasis by controlling the commitment, differentiation, and function of cells in both the osteoblast and osteoclast lineages, the precise mechanisms by which Notch performs such diverse and complex roles in bone physiology remain unclear....

متن کامل

Nuclear Architecture and Epigenetics of Lineage Choice

Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...

متن کامل

mTORC1 Prevents Preosteoblast Differentiation through the Notch Signaling Pathway

The mechanistic target of rapamycin (mTOR) integrates both intracellular and extracellular signals to regulate cell growth and metabolism. However, the role of mTOR signaling in osteoblast differentiation and bone formation is undefined, and the underlying mechanisms have not been elucidated. Here, we report that activation of mTOR complex 1 (mTORC1) is required for preosteoblast proliferation;...

متن کامل

Notch inhibits osteoblast differentiation and causes osteopenia.

Notch receptors are determinants of cell fate decisions. To define the role of Notch in the adult skeleton, we created transgenic mice overexpressing the Notch intracellular domain (NICD) under the control of the type I collagen promoter. First-generation transgenics were small and osteopenic. Bone histomorphometry revealed that NICD caused a decrease in bone volume, secondary to a reduction in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 154 2  شماره 

صفحات  -

تاریخ انتشار 2013